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Phase transitions in a nonequilibrium Potts model: A Monte Carlo study of critical behavior
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The nonequilibrium steady states of the three-state Potts model, coupled to two thermal reservoirs at
different temperatures, are studied by Monte Carlo simulations using Glauber dynamics. In addition to
the quartic cumulant, we measure another invariant, cubic in the magnetization. The second-order
phase transition in the equilibrium model is shown to persist for the nonequilibrium cases. The critical
properties of all models are found to belong to the same universality class.
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Over the past decade, much has been learned about the
statistical mechanics of nonequilibrium steady states
which clearly lie outside the regime of linear-response
theories. A large party of the research to date focused on
the uniformly driven Ising lattice gas, first introduced
[1,2] as a model for superionic conductors [3]. Among
the many phenomena which display distinctly nonequili-
brium characteristics, the critical behavior of this “stan-
dard model” is shown to belong in the universality class
of a non-Hamiltonian fixed point [4,5]. Similarly, when
the lattice gas is driven by random uniaxial fields or by an
appropriate coupling to two thermal baths at different
temperatures, critical singularities are found to be in yet
another non-Ising class [6,7]. In stark contrast, when a
particle nonconserving dynamics is imposed on the same
Ising model and driven into nonequilibrium steady states,
the critical properties are controlled by the Wilson-Fisher
fixed point; i.e., they fall into the equilibrium class [8].
Derived with field-theoretic renormalization-group tech-
niques, this result is confirmed in Monte Carlo studies
with a variety of drive [9,10].

Much less is known about driven systems with more
than two states per site. In particular, only a few three-
state systems have been studied so far [11]. All the mod-
els considered, motivated by different reasons, have had
dynamics that are asymmetric between the three states.
No one explored the effects of drive on the second-order
phase transition in the symmetric case, i.e., the Potts
model [12] in two dimensions (d =2). In this Brief Re-
port, we present simulation results of a symmetric three-
state (¢ =3) model evolving with spin-flip or Glauber dy-
namics [13], and driven far from equilibrium by coupling
to two thermal baths at unequal temperatures. Unlike
the Ising case, the cubic invariant [14] in the ¢ =3 and 4
Potts Hamiltonian prevents a successful application of
the field-theoretic renormalization-group treatment of the
equilibrium critical behavior. Lacking a reliably sys-
tematic approach [15], we cannot follow [8], so that there
is no theoretical basis for believing that the universality
class remains unchanged when nonequilibrium, Glauber-
type dynamics is introduced. Thus we are left with only
an intuitive argument; i.e., that coarse graining should
smear out the distinction between the local temperature
differences so that these systems should behave as if they
are set at a single, intermediate effective temperature.
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Against this background, it is important to carry out
simulation studies and see if this intuitive picture is
correct.

Our model consists of a periodic square lattice of L2
sites, labeled by i. On each site is assigned a two-
dimensional spin variable m;. Each m; has unit length
and makes an angle of 27/ /3 with the x axis, where / =0
and *1. The energy of a configuration is
E({mi})=—J2(,-j)8mimj, where Sm;mj is the Kroniker
delta, and the sum runs over all nearest-neighbor pairs
(ij). We consider only the J >0 case (ferromagnetic in-
teractions), and set J=1; i.e., our inverse temperatures
will be quoted in units of 1/J. The dynamics is defined
by the moves and acceptance rates of our simulation. A
Monte Carlo sweep (MCS) consists of L2 moves. In a
move, the spin at a randomly chosen site is changed to
one of its two other possibilities, with probability given
by the Metropolis rates [16]: P(m; —m})
=min{1,exp[B;(E'—E)]}, where the inverse tempera-
ture B; takes one of two values aff and B, depending on
whether the sum of the x and y coordinates of i is even or
odd, and E and E’ are the energy of the configurations
before and after the move, respectively. When a=1, the
model is simply the equilibrium three-state Potts model,
but when a > 1 there is a constant flux of energy from the
even sites, through the system, into the odd sites, and the
characteristics of the steady state are, in general, distinct-
ly nonequilibrium.

Simulations of the system were performed with tem-
perature ratios a of 1, 2, and «. The a=1 equilibrium
case was included as a check on our methods, since S,
and the critical exponents are known exactly [12,17], and
for a direct comparison with the nonequilibrium results.
For the “a= " cases, we actually set B 44= 10, which
excludes all energy-increasing spin flips. In all cases, we
sweep in B and present our data as functions thereof.

We started with some relatively short runs to deter-
mine the order of the transition and to estimate the tran-
sition temperature. Those simulations were performed
on systems with L =4, 8, 16, 32, and 64. The runs were
~10%® MCS’s in length, and data were taken every 20
MCS’s. Typically a few thousand MCS’s were discarded
before taking data, to allow the system to reach a steady
state. To study the critical properties, we measured a
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FIG. 1. Q; as a function of B for a=1 (a), =2 (b), and a= » (c). The data shown are for L =4 (V), 8 (0), 16 (1), 32 ({), and 64

(D).

number of different quantities including the total magne-
tization M=3,m; and the total energy E of the
configurations. With M, we construct the following two
ratios:

_(M}-3M,M})
- (M2)372

(M*)?)
gzL:Z-_ZiZESE_ and F;
The former was introduced by Binder [18] as an efficient
method to locate T,. In the L — co limit, it is a universal
quantity [19] in the equilibrium Ising model and was used
in several nonequilibrium cases successfully [10]. Antici-
pating the same behavior for the equilibrium Potts mod-
el, we consider Q; , which turns out to be the only quartic
invariant for ¢ =3 [14]. Generalizing to the case for the
cubic invariant, we introduce the later. Like Q;, F; is a
step function in the thermodynamic limit. It vanishes
above T, and becomes unity below criticality. Though
there is no field-theoretic basis that F at T, should be
universal, we believe that it is so and exploit it in this
study.

Qualitatively all of the quantities measured behave
similarly for all three values of «, thus indicating that the
second-order transition of the equilibrium model persists
when a>1. The results for Q; are shown in Fig. 1.
Curves corresponding to the different system sizes cross.
Crossings associated with successive pairs of L’s converge

to a point, the abscissa of which is identified as the criti-
cal B,. We see that the data for the a=1 case converge,
from above, to the exact equilibrium critical value 1.005
[12]. For the other two cases, similar well-behaved con-
vergence allows us to locate B, with some confidence. As
in the two-temperature Ising model [10], the phase transi-
tion is still present even if one of the temperatures is set
at zero, in contrast to the anisotropic equilibrium model
in which setting one coupling at infinity automatically
leads to ordered states. Next, by examining the values of
Q, at the crossings, we see that they appear to be the
same for all three cases. Since Q_(fB,) is a universal
quantity, this behavior suggests that we remain in one
universality class as we move away from equilibrium.
Proceeding to F;, we first note that these differ from
Q; in two significant ways: (a) F; is not monotonic in f3,
so that F is a step function with an “overshoot” at the
discontinuity; and (b) there are two crossings for each
pair of curves (Fig. 2). At this point, it is difficult to ex-
plain such novel behavior theoretically, especially consid-
ering that even a Landau-Ginzburg-like theory for the
second-order transition does not exist. Using the a=1
case as a guide, we see that the two crossings lie on either
side of the critical point. This feature may be exploited
to provide a lower bound for B,. We remark that, for
each pair of L’s, the crossing in Q; lies within these
bounds. As L — o, these bounds appear to converge,
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FIG. 2. F; as a function of B for a=1 (a), a=2 (b), a= = (c). The data shown are for L =4 (V), 8 (0), 16 (0O), 32 (0), and 64 ().
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giving us further confidence in our estimate for B, in the
nonequilibrium cases. In Table 1, we summarize our re-
sults for B (a). It is remarkable that both B,(2)/8,(1)
and B.(®)/B.(1) are essentially identical to those in the
Ising case [10]. Following [10], we can give an estimate
using mean-field “theory,” also arriving at B,(a)=1/V a.
While this is qualitatively correct for a=2, it is entirely
inadequate for large a. To continue, we see that the
behavior of F; (B), as L increases, is essentially the same
for the three a’s. Though it is unknown if F(f,) is also
universal, we argue that this behavior supports our con-
jecture that the equilibrium fixed point controls the criti-
cal singularities of all @71 models.

To further check this conjecture, we preformed some
longer runs at the estimated critical temperatures, with
L =38, 16, 32, and 64. The length of these runs were, re-
spectively, 10%, 4X10% 107, and 2X10® MCS’s, while
data were taken every 10, 40, 100, and 20 MCS’s. During
these runs, we measured the fluctuations in the
energy C,=B*(E?)—(E)*)/L? and magnetization
x.=((M?)—(M)?)/L2 For an equilibrium system,
C, and y are the specific heat and susceptibility, respec-
tively. For nonequilibrium systems, the fluctuation dissi-
pation theorem does not hold and the connection fails in
general. Nevertheless, we expect these quantities to scale
at T, as a power of L. The results are displayed in log-
log plots [Figs. 3(a) and 3(b)], with the error bars es-
timated by binning the data. It is clear that driving our
system into nonequilibrium steady states does not drive
these critical properties out of the equilibrium class. To
determine the exponents quantitatively, we fit the data to
the following functional forms:

Co~Co+aL™ ? and y =xo+6L™ >, (@
where C, a, X, and b are unknown parameters. The
lines through the data in Fig. 3 are the results of a non-
linear least-squares fitting procedure. In Table I, we give
the numerical values for the exponents, showing that they
do not differ significantly for the various a’s and that
they are close to the exact values of the equilibrium mod-
el [12]. The slight systematic deviations away from the
exact values is likely due to finite-size effects, which we
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TABLE 1. Numerical results for estimated critical point and
the fitted values of the thermal and magnetic exponents y, and
Yn. B. is given in units 1/J, with estimated errors at less than
0.1%. For the exponents, the error bars (in parentheses) corre-
spond to 95% confidence bounds. The exact values of the equi-

librium exponents are y, = £ and y, = 2.

a B. Ve Yh

1 1.005 1.15 (5) 1.872 (18)
2 0.772 1.15 4) 1.886 (17)
© 0.668 1.16 (7) 1.872 (59)

have not included in our analysis. These results confirm
our conjecture that the fixed point of the equilibrium
model is stable against this type of nonequilibrium dy-
namics.

We have also attempted scaling plots for Q;, F;, and
C;, in an effort to find universal scaling functions. How-
ever, we refrain from drawing a conclusion since only the
L =32 and 64 sets of data collapsed. Work is in progress
involving larger L’s and toward a systematic study of
finite-size effects.

In summary, we have performed Monte Carlo simula-
tions on a two-temperature three-state Potts model with
Glauber dynamics. In addition to the cumulant ratio
usually exploited to locate T, for the Ising model, we pro-
posed another ratio, based on the cubic invariant of the
Potts model. Equilibrium critical properties are found to
agree well with exact values. For nonequilibrium cases,
our results suggest that the second-order transition per-
sists at all temperature ratios and that the universality
class remains unchanged. These findings, being remark-
ably similar to those in the case of two-temperature Ising
models with Glauber dynamics, support an appealing and
intuitive picture that the long-wavelength, low-frequency
properties of such systems are well described by a model
effectively in equilibrium at a single, intermediate temper-
ature.

We conclude by discussing some open questions and
possibilities for future work. One is to measure various
macroscopic quantities in this model, away from T, in
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FIG. 3. Results for y, (a) and y, (b), from long simulations performed at the critical points for a=1 (0), 2 (0), and « (A). The
error bars, suppressed in (b) for clarity, indicate one standard deviation. The solid lines show the results of curve fitting.
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order to test the validity of the intuitive picture. Ventur-
ing slightly further, it would be interesting to explore the
critical properties of ¢ =3 Potts models with other types
of nonequilibrium dynamics, such as the various kinds of
particle conserving dynamics imposed on driven Ising lat-
tice gases. Since these systems display critical phenome-
na drastically different from their equilibrium counter-
part, we suspect that the same holds true of the three-
state Potts model. Work is in progress to determine these
new critical properties. Progressing to g > 3 cases, there
is a subtle transition in the ¢ =4, d =2 equilibrium Potts
model [12], which readily presents itself as a natural ex-
tension of this study. Of course, a central question in the
broader perspective is the following. When a system in a
nonequilibrium steady state undergoes a second-order
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phase transition, how do we identify the essential in-
gredients which produce non-Hamiltonian critical
behavior? At present, having only examples and models,
we are far from a systematic classification. Finally,
beyond critical phenomena, it is undoubtedly important
to explore the effects of nonequilibrium dynamics on a
first-order transition, which is the hallmark of most Potts
models.

We thank Z. Racz and B. Schmittmann for stimulating
discussions. This research is supported in part by grants
from the National Science Foundation through the
Division of Materials Research and the Jeffress Memorial
Trust.

[1]S. Katz, J. L. Lebowitz, and H. Spohn, Phys. Rev. B 28,
1655 (1983); J. Stat. Phys. 34, 497 (1984).

[2] For a review of critical properties, see B. Schmittmann,
Int. J. Mod. Phys. B 4, 2269 (1990). For a comprehensive
review and further references, see B. Schmittmann and R.
K. P. Zia in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz, (Academic, New
York, in press).

[3] See, e.g., S. Chandra, Superionic Solids. Principles and Ap-
plications (North-Holland, Amsterdam, 1981).

[4] H. K. Janssen and B. Schmittmann, Z. Phys. B 64, 503
(1986); K.-t. Leung and J. L. Cardy, J. Stat. Phys. 44, 567
(1986); 44, 1087 (1986); K. Gawedzki and A. Kupiainen,
Nucl. Phys. B 269, 435 (1986).

[5] K.-t. Leung, Phys. Rev. Lett. 66, 453 (1991); Int. J. Mod.
Phys. C 3, 367 (1992).

[6] B. Schmittmann and R. K. P. Zia, Phys. Rev. Lett. 66, 357
(1992); B. Schmittmann, Europhys. Lett. 24, 109 (1993).

[7] Z. Cheng, P. L. Garrido, J. L. Lebowitz, and J. L. Vallés,
Europhys. Lett. 14, 507 (1991); K. Hwang, B.
Schmittmann, and R. K. P. Zia, Phys. Rev. Lett. 67, 326
(1991); Phys. Rev. E 48, 800 (1993); E. Praestgaard, H.
Larsen, and R. K. P. Zia, Europhys. Lett. 25, 447 (1994).

[8] G. Grinstein, C. Jayaprakash, and Y. He, Phys. Rev. Lett.
55, 2527 (1985). An extension of this result will be
presented by K. E. Bassler and B. Schmittmann.

[9] C. H. Bennett and G. Grinstein, Phys. Rev. Lett. 55, 657
(1985); P. L. Garrido, A. Labarta, and J. Marro, J. Stat.
Phys. 49, 551 (1987); Y. He, C. Jayaprakash, and G. Grin-

stein, Phys. Rev. A 42, 3348 (1990); H. W. J. Blote, J. R.
Heringa, A. Hoogland, and R. K. P. Zia, Int. J. Mod.
Phys. B 5, 685 (1991); P. L. Garrido and J. Marro, J. Phys.
A 25, 1453 (1992).

[10] H. W. J. Blote, J. R. Heringa, A. Hoogland, and R. K. P.
Zia, J. Phys. A 23, 3799 (1990).

[11] M. Aertsens and J. Naudts, J. Stat. Phys. 62, 609 (1991); B.
Schmittmann, K. Hwang, and R. K. P. Zia, Europhys.
Lett. 19, 19 (1992); K. E. Bassler, B. Schmittmann and R.
K. P. Zia, ibid. 24, 115 (1993); M. C. Marques, J. Phys. A
26, 1559 (1993).

[12] For a review of the Potts model in equilibrium, see, e.g., F.
Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

[13] R. J. Glauber, J. Math. Phys. 4, 294 (1963).

[14] G. Golner, Phys. Rev. B 8, 3419 (1973); L. Mittag and M.
J. Stephen, J. Phys. A 7, L109 (1974); R. K. P. Zia and D.
J. Wallace, ibid. 8, 1495 (1975).

[15] There are several other ingenious approaches, e.g., the
1/q'/? expansion of P. Ginsparg, Y. Y. Goldschmidt, and
J. B. Zuber, Nucl. Phys. B 170, 409 (1980). However, none
can treat the ¢ =3, d =2 Potts model systematically.

[16] N. Metropolis, A. W. Rosenbluth, M. M. Rosenbluth, A.
H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

[17] S. Alexander, Phys. Lett. A 54, 353 (1975).

[18] K. Binder, Z. Phys. B 43, 119 (1981).

[19] E. Brézin and J. Zinn-Justin, Nucl. Phys. B 257, 867
(1985); A. D. Bruce, J. Phys. A 18, L837 (1985); T. W.
Burkhardt and B. Derrida, Phys. Rev. B 32, 7273 (1985).



